
Abstract This paper presents research into optimal dispersion models as
applied to central places. The literature regarding location optimization and
central places is reviewed and the motivation for employing dispersion models
is identified. Models that employ the objective of maximal dispersion in the
context of central places are formulated and solved in the context of both
single- and multiple-good systems. Two methods for generating multiple-good
systems are presented: a multiple-type dispersion model and a K-value con-
straint set formulation. Sequential solutions to dispersion models demonstrate
how a system of central places could develop over time. The solutions to these
models generate the patterns of central places expected under the organizing
principles of central place theory. The objective of maximal dispersion is
posited as both a motivating factor in central place location decisions, and as
the optimal outcome of a mature system of central places.
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1 Central place theoretic dispersion

Central place theory (CPT) has for over a half-century been considered to be
one of the principal components of pure geographical theory (Berry and
Garrison 1958). CPT provides a partial justification for an emphatic belief in
the existence of a theoretical geography independent of any set of mother
sciences (Bunge 1966). Geographic researchers have looked to CPT as an
example of a search for fundamental spatial laws. Its elements are deductively
linked, and its outcome is purely spatial. Among geographers there are those
who assert that it is one of the most important and useful theoretical models in
the study of geography (Tobler 1993).

The purpose of this article is to present the findings of research into optimal
dispersion models as applied to central places. More specifically, models that
employ the objective of maximal dispersion generate patterns of central places
that are identical to the patterns expected under the organizing principles of
classical CPT. This research does not attempt to either confirm or refute the
social or economic processes that have previously been posited as underlying
CPT. Rather, results are presented that demonstrate for the first time that
under the classical assumptions of CPT an objective of maximal spatial dis-
persion will—by itself—generate the predicted central place patterns. More-
over, a recent multiple-facility dispersion formulation and the associated
concept of repulsion measures are used to model hierarchical central place
systems. A previously unformulated set of constraints are presented that force
compliance with the K-value ratios between levels of the central place hier-
archy, and the results generated from these constraints are contrasted with
those from the repulsion-weighted method. These results suggest that dis-
persion, while most certainly not the only process underlying the location of
urban centers, deserves attention as a motivation for location, and provides a
mechanism through which central place patterns could develop over time.

2 Literature review

This is not the appropriate forum to exhaustively examine the enormous lit-
erature that surrounds CPT (See Berry and Pred (1965) for a bibliography
only through 1964). Instead, this review examines 1) those elements of CPT
that suggest that a dispersed pattern of central places is the theoretical out-
come of a developed urban landscape, and 2) the use of optimization as
applied to CPT.

2.1 The assumptions of central place theory

Walter Christaller outlined the theory of central places in his Ph.D. disser-
tation 1933 (Christaller 1966). The primary question Christaller asks is: ‘‘are
there laws which determine the number, sizes, and distribution of towns?’’ He
clearly believes that there are such ordering principles, and he accepted the
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notion that when searching for universal spatial laws, rather than descriptive
idiosyncrasies, one may legitimately simplify the space to remove the partic-
ulars and to distill the generalities. His simplifying assumptions stated that
towns develop on an isotropic plain with no variation in its physical character,
its transportation facilities, or its productive capacity. A population with
uniform characteristics was evenly dispersed on that plain. Those persons
would purchase goods from the nearest supplier, and they would each have
the same propensity to consume. Each good or service offered in a town had a
range and threshold.

When considered simultaneously, Christaller’s assumptions had the fol-
lowing consequences: The agricultural plain is eventually divided into non-
competing, hexagonal (with sufficient competition), complementary regions,
with a central place at the center of each. The largest central places offer all
the goods that the population demands and can afford, requiring the co-
location of facilities that sell different central goods, which determines the size
of the complementary region. Lower-order centers are nested within the re-
gions of higher-order centers. Christaller proceeded to show that these con-
sequences of his assumptions are consistent under three organizational
schemes. The marketing, traffic, and separation (administrative) principles
provide arrangements of the central places in an area based on consumer
behavior, traffic patterns, and human social and political organization,
respectively.

August Lösch (1954) mathematically compared shapes of potential market
areas (i.e., circles, squares, triangles, and hexagons) and showed that the
honeycomb is the most advantageous shape for economic regions. Christall-
er’s and Lösch’s findings demonstrate that a hierarchical, dispersed pattern of
central places and their associated market areas is the optimal arrangement
under the simplifying assumptions given above. Subsequently, a body of CPT
literature has developed that expands on this notion of optimality.

2.2 Central place theory and optimality

Much research into the optimal location of central facilities has been based
on inferences of economic motivation from the assumptions of CPT as the
basis for measuring optimal performance. In a review of alternative for-
mulations (Beaumont 1987), the majority of the models specify an objective
of maximizing demand. More complex models incorporate a notion of price
elasticity of demand (Griffith 1986). Other studies have focused on mini-
mizing costs: including transport and commuting costs between central pla-
ces (Puryear 1975), and consumer shopping costs (Kohsaka 1984). Several
franchise optimization models have been developed including a market
share model which encourages avoidance of the locations chosen by a
competing franchise, and a competition ignoring model which attempts to
maximize market penetration by a single franchise with no concern for the
locations of outside competitors (Goodchild 1984). The structures of these
models are based on two seminal location–allocation problems, the p-median
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and p-center problems, respectively (Hakimi 1964). Another family of
franchise-based central place optimization models addresses the need of a
franchiser to expand the existing system of outlets (Ghosh and Craig 1991).

While the examples given above vary in the nature of the economic prin-
ciples that are employed to develop an optimal central place system, they are
consistent in their generation of only a single level of a central place hierarchy.
The generation of multi-level (or multi-good) central place hierarchies has
received substantially less attention from researchers and has been described
as the ‘‘…major characteristic that must be addressed if location–allocation
models are to be employed to operationalize central place concepts’’ (Beau-
mont 1987). One effort that focuses on this issue generates a hierarchical
spatial system by minimizing the total cost incurred by both producers and
consumers of a set of ordered goods, while serving the total demand (Dok-
meci 1973). Another effort used both top–down and bottom–up approaches to
determine spatially efficient multi-level systems with the p-median objective
(Fisher and Rushton 1979), while a third sought to locate two levels of
facilities using the same objective (Narula and Ogbu 1979). Still another multi-
level model maximizes the number of firms that can coexist in a market (Kuby
1989). The rationale for this objective is based on the intuitive
notion—attributed to Lösch—that additional firms will locate until excess
profits are driven out of the system. By including the concept of inner and
outer networks, and a set of constraints that enforce the symmetry of demand
allocations, Kuby does, in fact, produce some solution patterns that are con-
sistent with the three K-value systems (3,4,and 7) given by Christaller. In some
cases additional nodes are added to the network in order to produce results
consistent with theory. In essence, this model is validated by its production of
results consistent with theory, although both modifications to the model that
are not explicit representations of elements of the theory, and modifications to
the network of nodes were required to achieve this validation. Another body
of work shows that location optimization problems (including those dealing
with hierarchical systems) can be solved with the use of Voronoi diagrams
(Boots and Shiode 2003; Okabe and Suzuki 1997). Although these problems
have not been cast directly in the context of CPT, the space partitioning
nature of the Voronoi polygons and the fact that many of the objectives listed
above have been implemented in this way suggests that such an application is
reasonable.

Storbeck (1988) explored the arrangements of central place systems
through a ‘‘natural’’ slack-covering model that locates central places on a
triangular lattice in such a way that both market coverage of demand and
market overlap are maximized. The range is included as a maximum service
distance. In an extension to this work, Storbeck (1990) developed a protected
threshold covering (PTC) model where each located central place maintained
a protected inner range or threshold. The protected threshold model can be
structured to mimic each K-valued central place system. In subsequent work a
multi-objective model is formulated to explore the design of franchise outlet
systems (Current and Storbeck 1994).
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The range of optimal location objective functions that appears in the lit-
erature underscores the importance of choosing a function in which one can
have faith in the validity of its underlying assumptions, and highlights the fact
that many formulations address only one or two elements of a larger problem
to be solved (Rushton 1987). The objective selected here is based on the
observation that classical CPT requires a dispersed population as an input, and
generates a hierarchical system that contains centers at each level that are
maximally dispersed. These fundamental elements of the theory suggest that
the formulation of a maximal dispersion model may be an appropriate means
of generating a hierarchy of central places in order to test it against the
expected outcome of the theory. If that test proves successful, a reconsider-
ation of the impulses behind the geometric outcome may be appropriate.

3 Central place models of dispersion

Regardless of a particular researcher’s interpretation of central place objec-
tives, there exists a widely accepted, explicit, spatial form that can be used as a
standard by which to judge any given central place model. This spatial form is
the dispersed, nested, hierarchical system of hexagons described by Christaller
and Lösch. The authors recognize that CPT is an example of process-form
reasoning. That is, if a model (a) accurately reflects some process underlying
the location of central places, and (b) correctly generates the classical CPT
form, then this model allows the user to confidently explore selectively relaxed
versions of the model and the consequences of those relaxations. If the form is
generated, the process captured by the model may be of significant interest,
and deserving of further examination. The purpose of this research is to
determine if the process of dispersion can be considered a reasonable moti-
vation for the location of central places based on the forms generated by that
objective, and their correspondence with the well-defined geometric forms
described by the classical theory.

3.1 Dispersion as form and process

In an effort to model the evenly dispersed population assumed in CPT as a set
of discrete points, demand is commonly represented as a triangular lattice of
points. This lattice of points also serves as the set of potential central place
locations. This set of population points is not only evenly dispersed, but is, in
fact, maximally dispersed according to the measure of the mean nearest
neighbor distance (Ebdon 1988). Moreover, this population always seeks
optimality, in that they always purchase a single central good from the nearest
supplier (trip chaining or multiple-good trips could complicate this notion of
optimality), thus minimizing the distance they need to travel and the con-
comitant transportation cost. These characteristics are reflected in the maxi-
mally dispersed set of optimal central places expected by theory. There is no
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question that dispersion is the form of both the inputs to and the outputs from
CPT.

Given this well-accepted presence of dispersion in the form of CPT, this
research is concerned with dispersion as a process. Can dispersion be an
element of the purposive maximizing behavior, as defined by Eaton and
Lipsey (1982) that is presumed to underlie the location of central places? Is
the motivation to disperse part of the process that leads sequentially locating
retailers to the eventual equilibrium state? The notion of sequential location
of firms is significant (Prescott and Visscher 1977; West 1981). No one ima-
gines that a set of sellers simultaneously locates at a state of equilibrium. Even
if only two sellers are choosing locations, they certainly would not locate in
such a way that they are separated by their threshold distance—allowing them
to only just eke out a profit—even though this state will eventually occur as
excess profits are claimed by entering competitors. They would certainly wish
to locate further apart in order to capture all excess profit available in the
system at that time. This idea is supported by the spatial consequences of
competitive duopoly where an expressed or tacit understanding of the benefits
of dispersion provides for a lower total social cost of purchasing goods (due to
lower transportation costs) (Hotelling 1929), and larger total market (and
sales) (Devletoglou 1965). Maximal dispersion as a location objective seems
viable (d’Aspremont et al. 1979) as long as the tension between the seller and
the consumer (who prefers accessibility and convenience) is not so great as to
preclude trade. Under the assumptions of CPT this condition is met if the
range is not exceeded, even when the threshold is.

Given these long-standing and intuitive notions regarding economic max-
imization, it is not unreasonable to imagine a supplier of some good wishing to
locate at the maximum distance from a competing supplier. By being maxi-
mally dispersed from other merchants, one who locates early in the devel-
opment of the central place system increases the possibility that the
surrounding population will patronize his or her location. If there is any
flexibility in the range of a good based on the lack of other suppliers, this
objective also maximizes demand since the entire population within the
sphere of influence of that supplier will choose to patronize that center. This
will occur even if the threshold for profitability is exceeded, until additional
suppliers choose to locate in the system. Moreover, by choosing to maximally
disperse over the plain—rather than locating adjacent to another supplier of
the same good at a distance of twice the threshold for that good—both sup-
pliers will more likely be located at a higher order center as the central place
hierarchy matures.

Thus the process of dispersion may be advantageous for those providing
central goods. This research explores dispersion as an objective that repre-
sents a motivating process (through maximizing distance) and generates the
optimal forms expected by the theory of central places. Initially, a set of
single-good systems is generated on several different triangular lattices using a
maximal dispersion objective. This is accomplished through a process of
incrementally developing the central place system by adding additional

172 K. M. Curtin, R. L. Church

123



centers. The outcomes of this process are explored in terms of the K-value
patterns that can be observed among the various lattices. Next, two ap-
proaches are used to generate multiple-good central place systems. First, a
multiple-type maximal dispersion formulation is presented and the notion of
repulsion measures is described. Secondly, the K-value ratios developed in
classical central place theory (and observed in the single-good case) are ex-
plored and the difficulties in using them as constraints on the location of
centers are demonstrated.

3.2 Single-good systems of maximally dispersed central places

As an initial example, consider the set of eight graphics in Fig. 1a–h. Figure 1a
shows 23 points maximally dispersed over the plain in a triangular lattice. The
next seven graphics show the optimal solutions for the single-type maximal
dispersion problem (Erkut 1990; Kuby 1987). A mathematical formulation of
this problem is:

Max Z ð1Þ

Subject to: Z � dij þMð2� xi � xjÞ; 1 � i � j � n ð2Þ
Xn

i¼1

xi ¼ p ð3Þ

xi ¼ 0; 1; i ¼ 1; 2; :::; n ð4Þ

where
i, j = indices of potential central place location sites,
n = the number of potential central place location sites,
p = the number of central places to be located,
dij = the distance from potential location i to potential location j,
M = a very large number (at least larger than the largest distance between
any two potential central place locations),
Z = an objective function value to be maximized, and
xi = 1 if a central place is established at potential location i, 0 otherwise.

This problem is referred to in the literature as the p-dispersion problem and was

first developed as an extension to the p-center problem (Shier 1977). An optimal

solution to this problem will locate p central places such that the minimum

separation distance between any pair of places is maximized (Erkut and Neuman

1989). Although this maximal dispersion formulation has appeared in the liter-

ature before, it has never been cast in the context of CPT, even though a

dispersed population is the classic input, and a dispersed pattern of central places

is the expected outcome. In this example, this problem has been solved for

values of p ranging from 2 to 8. The optimal locations for central places are

displayed with a black hexagon symbol. For each optimal solution the isotropic
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Fig. 1 Optimally dispersed single-type CPT solutions on 23 nodes
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plain has been divided into Thiessen polygons showing the market areas of each

central place.

3.2.1 Sequential growth

Figure 1 represents one progression of the sequential growth of a single-good
central place urban system. The maximally dispersed solution for a single
supplier is trivial; every point is equally optimal (although they are not equally
optimal from a demand perspective, a perspective not under investigation in
this research). If two competing suppliers are locating, however, the optimally
dispersed solution is that shown in Fig. 1b, where two facilities locate at the
extreme boundaries of the isotropic plain. The plain is divided into two equal,
non-competing complementary regions. Since the population of the plain will
always patronize the nearest supplier, the demand will be split equally be-
tween these two suppliers, and all of the demand will be served if the range of
the good extends to the boundary of the Thiessen polygons. An initial
arrangement where central places are located at the edge of the developing
area is perfectly reasonable since, at this early stage of development these
edge locations—which can be compared to coastal locations or the locations
on the boundaries between developed and undeveloped regions—presumably
benefit from contact with external systems.

In the absence of a constraint forcing central places to remain in their
original locations, the addition of a third central place causes a relocation of a
central place in order to achieve optimal dispersion. Figure 1c shows such an
arrangement, where one of the central places from Fig. 1b has shifted to a new
location, and a new central place has been added to the system. This process
of relocation is not unexpected since urban centers are known to change their
place in the urban hierarchy based on the location and importance of com-
peting centers (Berry and Parr 1988). The shifting dominance of St Louis, MO
and Chicago, IL during the development of the interior of the U.S. is one
notable example (Cronon 1991). The graphic representation of this relocation
could give the mistaken impression that there is a shift of an entire population
from one location to another, particularly since we are only looking at one
level of the central place hierarchy. This shift should instead be imagined as a
relocation of some bundle of services from one location to another.

As the growth of the system proceeds, additional suppliers will be
encouraged to locate on the plain as long as the threshold for profitability will
allow it. With this sequential method, the process of locating additional cen-
ters (and sometimes shifting centers) based on the optimal solution for the
maximal dispersion problem continues in this way until the isotropic plain is
divided into non-competing, hexagonal regions that conform to the threshold
constraint.

However, if—for a particular bundle of services—relocation is difficult
(such as for services where capital intensive development is necessary for their
provision), constraints can be added to fix facilities in place once they become
part of an optimal solution. Doing so, however, can influence the arrangement
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of the mature system of central places and the value of the objective function.
Figure 2 shows the maximal dispersion solution for eight facilities that have
been incrementally added and fixed in place prior to another facility being
added to the solution. This arrangement clearly differs from the result in
Fig. 1h in that the expected central place pattern does not emerge, and the
objective function value is inferior by 13.4%. This suggests that the location of
fixed, or difficult to relocate, service facilities may be a fruitful avenue for
future research into the discrepancies between ideal and actual central place
patterns.

3.2.2 Edge and lattice configuration effects

The central place patterns generated through an objective of maximal dis-
persion are not immune to the edge effects that are present whenever the

Fig. 2 Optimally dispersed
solution with fixed facilities

Fig. 3 Maximally dispersed
arrangement on 25 nodes
(K = 3)
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assumption of an infinite, unbounded, continuous population is treated in the
context of a discrete location problem (Kuby 1989). Such an effect can be seen
in Fig. 3, which contains only one true market area that conforms to the K = 3
central place system, while other market areas are distorted by their proximity
to the edge. Although additional rows or columns of demand points could be
added to the lattice creating more true K = 3 market areas, this would simply
push the edge effect further out without changing the result that a central
place pattern is generated—in the interior of the lattice—through the imple-
mentation of the maximal dispersion objective. While methods have been
developed to manage the edge effect (Kendall 1989), the applications of such
methods in the context of maximal dispersion of central places are left for
future research.

However, in this research the solution of maximal dispersion problems on
triangular lattices with varying extents has exposed an effect related to edge
effects that has not been noted in the literature. It can be demonstrated that
the extent of the triangular lattice has an influence on the resulting K-value
systems that appear during sequential generation of central place systems.
Note that the optimal central place hierarchy in Fig. 1h conforms to the K = 4
arrangement (the transportation principle) described by Christaller. The
K = 3 and K = 7 central place systems are never generated by the optimal
solution to a maximal dispersion problem on this lattice. However, if the
triangular lattice of population points and potential center locations is ex-
panded to 25 points as shown in Fig. 3, and the number of centers is increased
to 10, the optimal solution conforms to the K = 3 arrangement. The objective
function has not changed, nor have the constraints, yet the nature of the
central place system is different. Thus it appears that the nature of the mature
central place solution is dependent on the number of lattice points and their
configuration.

In order to explore this further, Fig. 4 presents a series of graphics showing
the growth of a single good system on a triangular lattice of points based on
the sequential solution of the maximal dispersion problem formulated above.
The first few centers are located on the edge of the isotropic plain, as is
consistent with the urban development of a sparsely populated region. When
the number of centers reaches seven, a central place system matching the
administrative principle (K = 7) is generated. When the number of centers
increases to ten, a system matching the transportation principle (K = 4) is
generated. When the number of centers further increases to twelve, a system
based on the marketing principle (K = 3) is generated. At this point no
additional centers can be located without locating immediately adjacent to an
existing center, and the system can be considered to be fully mature, or at an
equilibrium. This clearly demonstrates that any of the three classical central
place systems can be generated solely through seeking the objective of max-
imal dispersion, on this particular triangular lattice.

It is as yet unclear what configurations will, in general, be associated with
particular central place patterns. While the triangular lattice of points is well
accepted as an abstraction of population or demand in central place research
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(going back to Christaller himself) there is no consensus on what constitutes
the ‘‘correct’’ extent of the lattice for research, there is no justification for the
entire lattice to be configured as a square, rectangle, hexagon, circle, or any
other particular shape, and there is no research into the nature what can be
termed the configuration effects associated with triangular lattices of varying
shape. While these additional research questions are of substantial interest to
the authors, they are not the subject of this paper, and therefore further
exploration of them is left for future research. Meanwhile the results that
demonstrate that expected central place forms are generated by the optimal

Fig. 4 Incremental single-good maximally dispersed solutions on a triangular lattice
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solutions to maximal dispersion problems are encouraging, as dispersion may
then be a motivating factor in the development of central place systems.
However, the single-good system does not represent a hierarchy of central
places. The following section addresses this by presenting two methods
of—and formulations for—generating multiple-good systems of central places
by employing multiple-type dispersion models.

3.3 Multiple-good systems of central places

A multiple-good system of central places can be generated with the maximal
dispersion objective in several ways. One potential solution procedure in-
volves the solution of a series of problems, one for each good in the multiple-
good system. The first problem finds the optimal solution for the lowest cost
good in the same way that the central places in Fig. 3 were determined. These
sites would then be the potential sites for the next level of central places. This
approach is attractive in that it allows one to continue the progressive
development of a system of central places that began with a single-good
system described in the previous section. It is intuitive in that, over time, a
center that sells a single good is more likely to expand in population and
importance as a center, and will therefore become a likely candidate for the
location of a supplier of a higher order good. Such a location is certainly a
more likely candidate than a previously undeveloped population point, which
would need to instantaneously become the location for the sale of multiple
goods.

However, this approach presumes knowledge of what is historically con-
sidered an outcome or consequence of CPT. That is, it assures that comple-
mentary regions of lower-order centers will be nested within the
complementary regions of higher-order centers, rather than allowing the
structure of the model to determine the interactions between suppliers of the
various types of goods. In order to accomplish this with a dispersion model for
multiple-good systems of central places, the model must be made aware of the
distinguishing characteristics of different types of central places and all sup-
plier locations must be determined simultaneously. The following sections
present two methods for doing so.

3.3.1 Multiple-type dispersion modeling for central places

A family of models for multiple-type discrete dispersion has recently appeared
in the literature (Curtin 2002; Curtin and Church 2006). The various possible
objectives for multiple-type dispersion models are related to those of tradi-
tional dispersion models (Erkut and Neuman 1990), but they differentiate
between types of facilities that ought to be dispersed according to a set of
repulsion measures. The more important it is to have facilities located away
from each other, the stronger is their mutual repulsion value. This recent
advance in dispersion modeling provides a new context for modeling hierar-
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chical central place systems. A typical multiple-type dispersion formulation
cast in the context of central places consists of:

Max Z ð5Þ
Subject to: Z � QUVdij þMð2� xU

i � xV
j Þ; i and j ¼ 1; 2; ::: ; n; i 6¼ j;

U and V ¼ 1; 2; ::: ; t;
ð6Þ

Xn

i¼1

xU
i ¼ pU ; U ¼ 1; 2, :::, t ð7Þ

xU
i ¼ 0 or 1 i ¼ 1; 2; ::: ; n; U ¼ 1; 2; ::: ; t ð8Þ

where the notation is the same as that defined for single-type dispersion
problems above, with the additions of:
t = number of types of central places (levels in the hierarchy);
U, V = indices for central place types (levels);
xi

U = 1 if a central place of type U is located at candidate site i, 0 other-
wise;
QUV = measure of repulsion between central places of type U and of type V
per unit distance of separation;
pU = the number of central places of type U to be located

In this formulation constraints (6) force the value of the objective function Z to be

less than or equal to the minimum of the repulsion weighted distances between

any two central places of any type. A constraint exists for each tuple of potential

locations and types of central place, with the exception that two central places of

the same type cannot logically be located at the same location. If either (or both)

of the two potential locations for a given constraint do not contain a central place

of the type under consideration (that is, if xi
U or xj

V or both are equal to zero), then

the objective function value Z need only be less than or equal to a very large

number added to the repulsion weighted distance between the facilities. When

both potential locations under consideration are assigned a central place of the

types under consideration, the term containing the very large number (M) is equal

to 0, and Z is constrained only by the repulsion-weighted distance between the

central places. Since a constraint exists for all logical pairings of potential locations

and types, Z must be less than or equal to the minimum repulsion-weighted dis-

tance between any two central places of any type. The sense of maximization in

the objective function (5) ensures that a solution will be sought which maximizes

this minimum repulsion-weighted distance.

Constraints (7) control the number of different types of central places to be
located. As in the example of sequential central place development given in
Fig. 1, the values of pU could be varied to demonstrate how centers of low
order goods develop first, and then higher order centers locate among these
lower order centers. Constraints (8) require that all decision variables are
equal to either 0 or 1, thus guaranteeing an integer solution.
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It is the repulsion measures in constraints (6) that encourage central places
at different levels of the urban hierarchy to disperse. As an example, consider
the triangular lattice of 45 population and potential central place location
points, and the incremental optimally dispersed solutions for a two-good
central place system given in Fig. 5. In this example there are two types of
central places—those that sell only the lowest order good (here called a
LowGood center) and those that sell the lowest order good and one other
higher order good (called a HighGood center). There must be repulsion
measures between pairs of LowGood centers and between pairs of HighGood
centers. Since LowGood centers are nested within HighGood centers, the
repulsion measures between them are equal to those between pairs of Low-
Good centers.

The repulsion measures are directly analogous to the threshold values for
the goods sold at each type of center: a larger threshold is associated with a
stronger repulsion value. Higher order goods are more expensive than lower
order goods, and therefore require a larger threshold to ensure that the
continued sale of the good is profitable. Additionally, people are generally
willing to travel greater distances to purchase higher order goods, since they
do so less frequently and are committing a greater proportion of their re-
sources to the purchase. Therefore, both the threshold and the range values
for higher order goods are greater. Given this, in order for a multiple-good
system of central places to be generated, pairs of centers that sell higher order
goods (in addition to lower order goods) must have a repulsion measure that is

Fig. 5 Incremental multiple-type (2 level) optimally dispersed solutions
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stronger than the repulsion measure for pairs of centers that sell only lower
order goods. This will result in higher order centers locating further apart,
with a larger market area surrounding them. In the example given here the
repulsion measure for pairs of HighGood centers must be stronger than the
repulsion measure for pairs of LowGood centers. In the example shown in
Fig. 5 a repulsion value of 1 was applied to pairs of LowGood centers and a
repulsion value of 0.34 was applied to pairs of HighGood centers. Although
somewhat unintuitive, when repulsion values range from 0 to 1, a smaller
repulsion value is stronger since it will be multiplied by distances in con-
straints (6), distances which the model seeks to maximize.

Using the multiple-type dispersion model with repulsion measures it is
possible to either determine immediately the optimal arrangement for a ma-
ture system of central places using values for pU that fill the triangular lattice,
or to incrementally determine the growth of the urban system over time. If
this second approach is desirable, one can first solve a series of problems for a
single-good system as shown in Fig. 5 (only 6 of the 17 increments are shown).
In our example the value of plowgood increments from 2 to 17 while the value of
phighgood remains at zero. When seventeen LowGood centers are located the
single-good system is mature. At that point, a problem can be solved for a
value of plowgood = 15 and a value of phighgood = 2. In each successive problem
the value of plowgood would decrease by 1 and the value of phighgood would
increase by one, essentially replacing a LowGood center with a HighGood
center. When the value of phighgood reaches 7 the multiple-good central place
system is mature, and no additional centers of either type can be added
without locating a center immediately adjacent to another center, violating a
threshold constraint. Once again, K = 3 and K = 4 central place patterns are
generated during the incremental location of facilities, solely based on optimal
dispersion. Note that nesting of central places occurs (Fig. 5) even in the
absence of formal constraints requiring it.

3.3.2 Multiple-type dispersion with K value ratios

Another method for generating multiple-good systems of central places in-
volves the use of the K-value outcomes of central place systems developed by
Christaller (1966). As mentioned in the discussion of single-good central
places, there are three primary K-value systems in classical central place
theory, although many more can and have been generated, including frac-
tional K-value systems (Church and Bell 1990). The three primary K-value
systems are K = 3, K = 4, and K = 7 which correspond to the marketing,
transportation, and administrative principles, respectively. The fact that all of
these central place systems appear at various times in the development of a
single-good system of central objective suggests that a system could be con-
strained to conform to a particular K-value.

For each of the K-value systems, the corresponding value represents the
total number of whole and fractional centers that are within the sphere of
influence of a center at the next highest level of the central place hierarchy.
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For example, in a K = 3 system each HighGood center market area contains a
total of three whole or fractional LowGood market areas. In order to model
mathematically this relationship among centers in the urban hierarchy, the
expanded pU constraints from the previous formulation (constraints 7) can be
complemented by a series of constraints that control the number of each type
of central place to be located based on the K-value ratio. For example, in a
central place system governed by the K = 3 market principle, the following
constraint set would maintain the appropriate values of pU for each of the
multiple types of centers to be located:

pU ¼ 2pUþ1; U ¼ 1; 2; :::; t � 1 ð9Þ

since a center of the next lower order is implicitly nested at the location of a
higher-order center, the multiplier representing the K-value must be reduced
by one in order to conform to the appropriate ratio. In the general case, if the
variable R represents the K-value ratio multiplier, the value of pU is given by:

pU ¼ ðR� 1ÞpUþ1; U ¼ 1; 2; :::; t � 1: ð10Þ

A constraint would then exist for each of the multiple types of centers being
located with the exception of the highest order center in the hierarchy (where
U = t). In this last case, the value of pU+1 must be equal to zero since this is the
highest-level center in the hierarchy. If a constraint of this type existed for
U = t, this would force all values of pU to be equal to zero.

Although these constraints control the relative number of central places at
various levels in the hierarchy, the user must supply some initial information
in order to seed the pU computations. If the user specifies only a global value
for p, then another set of constraints must be included to ensure that this
global value is met. Either the original constraint from the general single-type
maximal dispersion formulation that ensures that exactly p centers will be
located (constraint 3) must be included in the formulation, or a constraint
must be included that ensures that the individual pU values sum to this global
value:

Xt

U¼1

pU ¼ p ð11Þ

additionally, either the user or a constraint in the model must specify at least
one of the pU values. Alternatively, the model could potentially be designed to
always assign a value of 1 to the pU value for the highest-level center in the
hierarchy based on the number of types of facilities to locate, and to then
locate the appropriate numbers of facilities of each lower-order type. In
summary, these constraints preserve the K-value ratios between centers at
different levels of the central place hierarchy. The model itself determines the
appropriate split between facility types based on the central place ratio.
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On closer inspection, however, there are two problems with using the
constraints on p as presented above. First, it is possible for the user to specify a
global value for p with which it is impossible to generate values of pU that
satisfy the constraint sets. As an example, if a two-good central place system is
being generated with the marketing principle, and the user chooses a global p
value of 5, there is no way to logically satisfy the constraint sets. If p1 = 1, p2

must be equal to 2 for a global p value of 3. If p1 = 2, p2 must be equal to 4 for
a global p value of 6. No integer values of p1 exist for which the global p value
will be equal to 5. In order to circumvent this problem, the user could specify
only the pU value for the highest order centers, and the number of lower order
centers would be computed from this value and the K-value multiplier. As
long as the number of potential facility sites is greater than the resulting global
p value, a feasible solution could be generated.

A more challenging problem with using K-values to generate multiple-
good central place hierarchies is that K-value relationships do not always
hold. In the case of a fully developed central place system the K-value
relationships will hold only in the central regions of the isotropic plain.
When higher order centers are located near the boundary of the evenly
populated region there may not be sufficient potential facility sites avail-
able to contribute to the market area of the center, and therefore the K-
value ratio cannot be met for these centers. This edge effect can be seen
upon inspection of the example multiple-good central place system in
Fig. 5. At equilibrium, it can be seen that the market principle ratio of 3:1
holds only for the HighGood center located at the center of the region.
The six HighGood centers that have been located along the edges of the
triangular lattice, have only 2 1/6 or 2 2/3 centers of LowGood associated
with them. The missing LowGood centers would be located outside the
bounding edge of the triangular lattice. It is possible that the concept of
inner and outer networks implemented by Kuby (1989) could be employed
to overcome this difficulty, and the authors recognize that this is an
empirical modeling problem rather than a theoretical one. Moreover, the
K-value ratio method allows one to examine only the equilibrium state of a
central place system. This method does not provide the ability to model the
sequential growth of a system through the addition of newly locating
central places that was successfully demonstrated with the maximal dis-
persion formulation.

4 Discussion, conclusions, and future research

In this paper optimal dispersion models have been associated with central
places. First, a set of single-good central place systems was developed on a
series of triangular lattices using a maximal dispersion objective. The hierar-
chical systems were seen to grow and mature through successive incremental
increases in the number of dispersed central places. A range of K-value
central place systems was observed as the outcomes of these incremental
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processes. An examination of how the extent and configuration of the
underlying lattice of points influences the K-value central place systems that
appear under the objective of maximal dispersion remains as a subject for
future research.

Two systems were then presented to demonstrate the use of dispersion
modeling in multiple-good central place systems. The first employed multiple-
type dispersion models with a previously unpublished set of constraints on the
value of p (the number of centers to locate) for each type of center. This
model also included the use of repulsion measures to insure variation in dis-
tances among the various types of centers to be located. Since the concept of
repulsion measures has only recently been added to the location science lit-
erature, the topic may well benefit from additional research. A second system
for generating multiple-good central place systems was developed based on
the K-value ratios first observed by Christaller. Although optimal central
place hierarchies were developed through the use of K-value constraints, there
were difficulties with edge effects, and the ability to demonstrate system
growth was lost.

Most importantly, this research demonstrates that central place hierarchies
can be developed solely with the objective of optimal dispersion. Thus,
maximizing distances among center locations is viable as a means through
which the growth of urban hierarchies can be examined. A dispersive objec-
tive appears to be advantageous to the seller of central goods in that the
greatest possible market area is secured. Given this demonstration of a purely
geographic motivation, perhaps dispersion can now be combined with some of
the economic motivations developed earlier to obtain a more comprehensive
understanding of CPT. A test of the outcome of optimal dispersion against a
real world, temporal central place location pattern is also a subject for a
subsequent paper.

Although not presented in the present work, the authors have also devel-
oped a formulation of an r-separation model related to central place location.
This model seeks to locate as many facilities as possible in an area with a
minimum level of dispersion (or separation). The r-separation constraint
provides an additional method for modeling the concept of threshold. Such a
model may also be more appropriate for franchise systems where the mini-
mum sustainable market area is known in advance, and the siting of as many
franchisees as possible is desirable. Since r-separation models are not
explicitly maximizing dispersion, we leave that model and its variants as a
subject for future research.

Certainly the impetus for humans to organize themselves into urban centers
is the result of a complex interaction of spatial, economic, social, and
behavioral factors. This research strongly suggests that maximal dispersion
can play a role as a fundamental spatial motivation.
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