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Glossary

analytical hierarchy process A method for building a
hierarchy of decision elements and comparing and ranking
those elements.

branch and bound A search procedure in which relaxations
of an integer linear program are organized in a tree

structure and solved in order to bound the solution space of

the root problem and converge on the optimal solution.
combinatorial complexity The measure of the size of o

difficulty in solving a problem based on the number of

possible combinations of decision variable values within
the problem.

decision variables The elements of an operations research
model that represent choices among possible alternative
assignments of resources.

Delphi process A structured method for developing con-
sensus among decision makers and experts regarding the
significant factors to be included in a model.

enumeration procedure A method for examining all possible
alternative solutions in order to identify an optimal solution.

heuristic solution method A “rule-of-thumb” algorithm that
will rapidly produce high-quality (though not gnaranteed
optimal) solutions to a difficult problem.

interior point solution procedure An iterative procedure
that identifies a solution within the boundary of the feasible
region for a problem and improves on that solution until an
optimal solution is found.

linear programming A mecthod for modeling a complex
problem as a set of linear functions, including an objective
function and a set of constraints.

mathematical modeling The process of structuring complex
systems as a set of mathematical functions.

objective function The mathematical expression of the goal
of a complex system.

optimization An act, process, or methodology of making
something (as a design, svstem. or decision) as fully perfect,
functional, or (*H((tl\e as possible; specifically the mathe-
matical procedures (as finding the maximum of a function)
involved in this process.

resource constraint A mathematical  representation of
a limitation on reaching the objective for an optimization
problem.

simplex method An iterative procedure for solving a svstem
of linear equations given in a standardized form. represent-
ing constraints on a svstem.

Operations research is defined as the application of ad-
vanced analytical techniques in order to solve complex
problems. Its dominant characteristic is the use of math-
ematical models to analyze problems. With origins in mil-
itary strategic planning, operations research has found
applicability in a wide range of industrial. commercial.
and social contexts. Although many of the problems stud-
ied are highly combinatorially complex. advanced optimal
and heuristic solution procedures have been developed to
find alternative solutions for decision-making processes.

Operations Research Defined

The field of operations research (alternately termed op-
erational research or management science) is defined as
the application of advanced analvtical techniques in order
to solve complex problems. Operations research (OR)
contains a set of tools used by those who must make or-
ganizational decisions. Often these problems involve the
allocation of scarce resources in such a wav as to achiceve
a goal maximally (such as profit or level of service) or to
minimize some negative consequence of the operation ol
an organization (such as cost or environmental degrada-
tion). In order to solve a complex problem posed l)\ the
operation of an organization or system. this problem must
be formulated in such a way that it can be efficiently
analyzed.
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The dominant characteristic of OR is that it constructs
and uses mathematical representations, i.e.. models, to
analyze problems. These models commonly take the

form of an objective function that defines the goal of

the organization (or one of many goals), and a set of con-
straints representing the conditions within which the sys-
tem must operate. Once the general version of problem is
formulated, individual instances of that problem may be

solved optimally in order to suggest specific allocations of

the organization’s resources. This solution will be the one
that best satisfies the objective that is to be optimized. This
distinctive approach is an adaptation of the scientific
method used by other sciences.

History of Operations Research

The discipline of OR has its origins in the application of

problem-solving techniques in a military context during
World War TI, when the practice was termed ° nnhtdn
OR.” In this context, the complex system was designed to
wage war, and the components of that system were the
enormous resources and requirements of military orga-
nizations. Examples of how OR was applied include the
determination of the optimal fuse length for depth
charges designed to combat submarines, the optimal de-
plovment of radar stations and mining operations, and the
optimal arrangement for convoys of ships.

Following the end of the war, two fundamental
changes occurred in the practice of OR. First, the
methods employed in the conduct of war were quickly
adapted to a wide range of industrial applications. Rather
than maximizing thc efficiency of weapons systems,

problems were formulated to increase the olﬁcwn(\ of

manufacturing and transportation systems. Second, the
development ()f the simplex method by G. B. Dantzig in
1947 revolutionized the practice of so]\mg mathematical
models. The simplex method is a procedure for solving
asystem of linear equations given in a standardized form,
representing the constraints on a system. This iterative

method can efficiently evaluate very large numbers of

such constraints and associated variables. Due to the conm-
putational complexity of such problems and the potential
for astronomically large numbers of possible solutions to
evaluate, the s1mp|(\ method effectively unlocked the
solutions to a vast number of problems that could not
otherwise have been solved.

The two changes in the practice of OR have brought
about the steady growth in the development and applica-
tion of OR techniques for over 50 vears. Moreover, these

techniques  have demonstrated that the efficiencies
gained by mathematically modeling a system and solving
tlmt model optimally are S]”ﬂlﬁ(‘dl]t and can in some cases
be extraordinary. Rc((nt findings show that major

corporations have realized savings in the hundreds of

millions of dollars attributable to the implementation of
optimization techniques.

An Approach for Conducting
Operations Research

Although the mathematical model provides both the mes-
sage for decision makers and the structure for conveving
that message, the model alone is only one part of a process
for conducting OR. There are commonly five stages in this
process.

Stage 1: Understand and
State the Problem

As in any research project, the first ste p is to state the
pmblmn clearly. In the context of OR. such a statement
involves an undelstandmg_, of the svstem to be modeled
and the environment within which the svstem operates.
Understanding the system requires that there is a known
goal (or set of goals). Examples of goals are to maximize
pmﬁt in the context of a conumercial enterprisu to min-
imize cost for a particular manufacturing process. or to
minimize distance traveled in the case of transportation
applications. Moreover, there may be many factors that
influence the extent to which the ”()d] can be met. In terms
of commercial gain, there are limits on costs of acquiring
goods and constraints imposed by both markets and
c(ruldtl()ns In terms of nmnutlctmmtr processes, there
are set requirements for inputs and schedulmg consider-
ations. Transportation functions depend on the origin and
destination locations, the locations of stops, mode choices.
and a host of other factors. All of the pertinent factors
must be determined in order to have a reasonable under-
standing of the problem. These factors can be determined
thmIWh consultation with the managers of the svstem and
()thers who are experts in the [1(*](1 pm]mps through
a Delphi process. It may be appropriate to determine
the importance of different factors through the use of
an analytical hierarchy process or some other method
of ranking these factors. With an understanding of the
factors tlmt influence the system, a clear statement of the
problem can be generated.

Stage 2: Formulate the Problem
Mathematically

In any research project, models are built in order to find
a useful, albeit simplified, representation of a real-world
situation. Itis no different in OR. A mathematical model is
generated from the understanding of the problem gained
in stage 1 ol the research process. The model often
consists of a single objective function that reflects
a simplified vision of the goal to be met. The objective



function also serves as the quantitative performance mea-
sure for the system being modeled. A series of mathemat-

ical constraint functions represent simplified versions of

the limitations that must be met in the system.
Within these functions many different decisions must

be made in order to evaluate the system. Examples of

decisionsinclude which roads to travelin orderto minimize
distance, which locations to choose for warehouses, or how
many units of manufactured goods to ship froma particular
warchouse to a retail store. These decisions are repre-

sented within the functions in the mathematical model
with decision variables, and it is the value of these variables
that must be determined in such a way as to optimize the
system. Decisionvariables maybe binary (e.g., citheraroad

is traveled or it is not), integer (e.g., only whole units of

manufactured goods may be shipped), or fractional (e.g.,
any number of gallons or fractions of gallons of water may
be pumped in order to meet the needs of a u)mmumt\)
Constants or weights may be associated with par t](llldl
decision variables if relevant and accurate data exist.
Consider as an example the mathematical formulation
for a common OR problem known as the “knapsack”
problem. This problem arises when there is limited
space to carry or include items (such as in a knapsack)
and the objective is to select those items that will be most
valuable for inclusion in the limited space. This could
pertain to the loading of products for delivery into trucks
with limited space or limited weight-carrying capacity.
First, the notation used in the formulation is defined as

follows: j is the index of item types, N is the number of

types of items, ¢; is the value of item type j (where j =1,
2,....N),q;isthe weight of item type j (wherej = 1.2, .

N), 1) is the lumt on the total weight of the items that can l)e
included, and y; is the number of items of type j that
are included in the knapsack. The objective or goal is
to maximize the value of the items included in t]]e back-
pack, and thus the objective function can be written as

Maximize 7Z = ¢jx + caxa + - - - + ¢nty,
or alternatively as
N
Maximize Z = E Cix;.
Jj=1

This objective function is subject to a constraint on the
total amount of weight allowed (room in the knapsack or
truck). This constraint can be written mathematically as

aixy +asxs + - Favay < b,

or alternatively as

N
> a4 <b.
=
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The x; variables are the decision variables for this
formulation. It must be decided how many of cach type
of item (if any) ought to be included in the knapsack in
order to maximize the objective function, while respect-
ing the constraint. In practice, it is impossil)](\ to put
negative numbers of items in a knapsack. thus a set of
constraints is usually generated to ensure that the
decision variables hold only non-negative numbers of
items. These can be written as x; >0, x, >0.. ... vy > 0.
or alternatively as >0 forallj=1.2.....] N. Depending
on the nature of the items to be included in the knapsack.
these decision variables may be further constrained. For
example, if the items to be placed in the knapsack cannot
be broken into smaller pieces, thev must be constrained
to be only integer values. Moreover, if only one item of
each type may be included in the I\ndpsad\ then the
decision variables are binary and x; = 1if an item of type

j is included in the knapsad\ and x; = 0 otherwise.

Although the knapsack pl()l)lem is onlv one of mam
different types of problems that are (()nmmnl\ solved
in OR, the mathematical formulation is typical of many
different problems: there is an objective fumetion.
a constraint on the available resources for the svstem.
and a set of constraints on the values of the decision
variables. This common tvpe of formulation is called
alinear programming formulation. and such formulations
are perhaps the chief rescarch area in OR. However.
several other research areas command attention. includ-
ing critical path analysis, dynamic programming. goal pro-
gramming, nonlinear programming, decision ;uml'\'sis‘
game theory, Monte Carlo simulation, and queuing the-
ory. Due to the limited space here, the focus remains on
using linear programming to model complex svstems.

Stage 3: Solve Instances of the Problem

Once an appropriate model formulation has been devel-
oped, it must be used to solve real-world instances of the
problem. Although there is a fairly large toolbox of solu-
tion procedures and variants of such procedures. they can
be grouped into five major categories: graphical solution
procedures, enumeration methods, simplex-type solu-
tion methods, interior point methods, and heuristic
solution methods.

Graphical solution methods depend on the fact that all
of the parts of a typical mathematical formulation are
lincar functions. Those functions can therefore be
graphed in Cartesian coordinate space in order to deter-
mine the ()ptimul solution. Consider a pr()l)l('m instance
with two decision variables (v, and x») and with
two resource constraints (3xv; + 5y, < 20 and 4y, +

> < 15). The decision variables must be non-negative.
The objective function is to Maximize 7 =2y + x..
These functions can be graphed as in Fig. 1. Each axis in
the coordinate system represents one of the two decision
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variables. Each of the constraints can be graphed as linear
equalities, whereby one side of the line represents feasible
values for the decision variables and the other represents
values that would violate the constraint. Taken together, all
of the constraints (including the non-negativity con-
straints) define the feasible region for the problem in-
stance. This area is shaded in Fig. 1. The objective
function cuts through the feasible region, and its exact
placement depends on the values of the decision variables.
With the graphical method, it is easy to see that the objec-
tion hlnctl()n value will be greatest when the decision
variables have values that all()w it to be drawn through
the intersection of the two resource constraint lines. Al-
though the graphical method for solving OR problems with
linear functions is a very intuitive tool, is usefulness is lim-
ited to those cases in which there are only two or three
decision variables, since it is difficult to represent four or
more dimensions graphically in such a way that they can be
easily interpreted. Therefore, other solution pl()cedmes
must be employed for more complex problem instances.
When there are small numbers of constraints and de-
cision variables in the problem instance, it is conceivable
that a complete enumeration procedure could be used to
find the optimal solution. That is, each possible combi-
nation of decision variable values is tested and the asso-

ciated objective function value is found. One or more of

those combinations will be optimal. It may be more effi-
to employ a search method such as
“branch and bound” to eliminate some nonoptimal solu-
tions from consideration. The branch and bound method
divides the feasible region into partitions in a tree struc-

cient, however,

ture and uses the solutions to subproblems to bound the
objective function and “prune” branches of the solution
tree. In practice, however, many of the problem
formulations that must be solwd in OR belong to
a large family of problems that have been proven to be
“NP-complete” (where NP refers to nondeterministic
polynomial time). Simply put, this means that there are
no algorithmic solutions to such problems, and the size

4x,+x,=15

Feasible

eI 3x,+5x,=20

\ "

Figure 1 Graphical solution to a two-dimensional problem.

of the problems (as measured by the number of decision
variables and constraints) may grow exponentially. Due to
the massive resources (in terms ()I"c()mpntin‘gr time, mem-
ory, or storage) that such problems require in order to find
a guaranteed optimal solution, it is effectively impossible
to solve them through any enumeration procedure.
Therefore, an appropriate solution procedure  for
a problem instance must be chosen based on an under-
standing of the combinatorial complexity of the problem.

To demonstrate the notion of combinatorial complex-
ity in the context of common OR problems. consider the
snnp]e system present in a game of straight pool (bil-
liards). There are 15 billiard bdlls numbered sequentially,
and these must be arranged (in any order) in a rack with 15
places. In the general case, the number of alternatives will
be as follows:

n n!

Number of alternatives = <—) —
p plin—p)!

where n is the number of locations in the rack and p is
the number of billiard balls to locate among those
potential locations. In the special case of a billiard rack.
n is equal to p, so there are 15! (15 factorial) possibilities.
or 1,307,674,368,000 possible arrangements of the balls
in the rack. In order to determine the optimal solution
that describes the best way to arrange the balls through
snnp]v enumeration, the ()[)](Lt]\(‘ function must l)v
evaluated for each of the possible arrangements.
Depending on the complexity of the objective function
chosen for the rack, and on the computing power
available, this problem mayv be unsolvable through
inspection. Even a solution pu)t()u)l that can evaluate
the objective function 10,000 times per second would
need to run for over 4 years in order to gnarantee that
the optimal solution had been found. Recall that this
problem represents a system with only 15 components!
The problems of managing a (-()mpl( v industrial
application dwarf this pl()l)]em by comparison. Given
such combinatorial complexity of even small instances of
problems in OR, it is clear that enumerative solution
procedures are insufficient for many applications.

The development of the simplex method revolutionized
OR by providing a standard technique for solving even
large optimization problems of the form just described.
It is an iterative method that explores the boundary of
the feasible region, improving the objective function
value with each iteration until the optimal solution has
been found. Often the simplex method is used in conjunc-
tion with a branch and bound procedure to obtain integer
optimal solutions. In other cases, additional constraints
(termed “cutting planes™) are included in the formulation
in order to eliminate parts of the feasible region containing
fractional solutions. The “transportation” problem. the “as-
signment” problem, and the “transshipment” problem are



examples of the common problems pertinentto the simplex
method. Special versions of the simplex method have been
developed to more efficiently solve some problems with
particular structural characteristics. The “transportation,”
“assignment,” and “transshipment” problems are among
these. These special case solution procedures are some-
times termed “network flow” solution methods.

Interior point solution methods are an alternative to
the family of simplex solution procedures. These are it-
erative methods that find feasible solutions inside the
boundary of the feasible region (rather than on the bound-
ary), and at each iteration they find a solution that provides
a better objective function value until the optimal solu-
tion is found on the boundary.

When the problem size proves too large for any of the
enumeration or iterative methods, heuristic solution
methods may be the only practical means of finding
a solution. Many heuristics (or rules of thumb) have
been developed and tested on problems for which the

optimal solutions are known. It is presumed that if

a heuristic works well on small problems, it will likely
work well on larger instances of the same problem.
Some of the most common heuristics include a family
of interchange heuristics for which an initial solution is
chosen and successive interchanges of the decision vari-
able values are used to search for solutions that improve
the objective function value. Interchange heuristics are
susceptible to becoming trapped at local optima that may
be far from the global optimal solution for the pmb]om
and Tabu (as in “taboo,” referring to prohibition) versions
of these heuristics have been developed to overcome this
limitation. Simulated annealing heuristics use an analogy
to the process of heating and cooling metal to harden it, in
order to move toward the ()ptimul solution. Lugmngian
relaxation heuristics are used to find upper bounds on
a problem, ideally narrowing the solution space such
that the optimal solution is determined. Although heuris-
tic solution procedures may be the only reasonable meth-
od for determining solutions to large problems, and
although they may find the optimal solution, there is no
guarantee that they will do so.

Stage 4: Validate and Interpret the
Results of the Model

Once a general formulation for the model has been for-
mulated and instances of the problem have been solved
optimally or heuristically, the researcher must examine
the solution and reexamine the model that generated it.
Only through the processes of validation and interpreta-
tion of the solutions that are generated can the researcher
determine whether the model accurately represents
the problem environment. The quality of the optimal
solution is a function of the suitability of the objective
function, the constraints, and the parameters. The nature
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of mathematical models guarantees that anv objective
function will be limited in its precision and open to
interpretation.

There are several flaws from which models commonly
suffer, and which ought to be considered in the validation
process: extraneous variables, missing variables, misiden-
tified parameter values, and structural problems. It is
possible to use standard statistical analvses such as cor-
relation, regression, and dndlvsn()fnumnce to test for the
significance of the variables to the solution. If a variable is
not significant to the solution, it may be appropriate to
eliminate it and perhaps make the pr oblem casier to solve.
Conversely, measures of explained variance might suggest
that relevant variables are missing, although thev will not
help to determine which ones. Sensitivity (mal\ sis is useful
in determining the amount by which the parameters can
be altered before the g gcnemted solution will no longer be
optimal. The parameters that are varied can include eco-
nomic and social characteristics such as prices, demands.
or p()pulution ﬁgures, and p()sitionzll variations in site lo-
cations or distance measurements in the case of location
()ptll]ll/dtl()ll pmblcms If the solution is very sensitive to
changes in a particular parameter, then those values must
be determined with greater care.

If the model appears to be valid, a critical interpretation
of the model should be conducted in the light of the model
results. Simply visualizing the solution or presenting it to
decision makers can bring to light structural flaws in the
model. The optimal solution may expose a missing con-
straint that would preclude the solution from ever bei ing
implemented. The interpretation must be conducte dwith
awarcness that the optimality of the solution is alwayvs
relative to a carefully stated set of constraints, and these
constraints are always surrogates for and simplifications of
reality. Satisficing solutions that consider qualitative or
subjective elements may be close to optimal. but more
appropriate in terms of constraints that are well known
but not easily expressed as a mathematical function.

Although validation and implementation are discussed
here as a fifth step in a research methodology. elements
of these processes may be conducted th](m(rh(mt the re-
search program. This ln;_,hhg,hts the importance in stage 1
of the identification of decision makers and experts for
determining objectives, constraints, and significant
parameter values.

Stage 5: Implement the Model—Use the
model to Explain, Predict, and Decide

The final stage in the OR process is the implementation
of the model solutions. Implementation of the solution is
the only test of the validity of the results of the research.
Because the OR process is concerned largely with opti-
mality, it is tempting to assume that after careful formu-
lation, solution, and validation there could be no possible
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reason to reject or delay implementation of that optimal
solution. In practice, the generation of a valid optimal
solution may be less than half the battle. The implemen-
tation of a new solution for a complex system may cause
massive change in many different but related systems.
Resistance to these changes may be substantial and can
prevent the implementation of the optimal solution.

In order to ensure implementation of the results of the
OR process, those in a position to authorize its implemen—
tation must believe that the model is a reasonable simpli-
fication of the system and its environment, and they must
understand the structural assumptions built into the
model. Such understanding can be gained only through
clear communication of the model and the ways in which it
was generated, and through the involvement of all inter-
ested parties. Because OR tries to improve the efficiency
of the system under consideration, it implies a tacit crit-
icism of the existing arrangement. Therefore, in order to
avoid resentment among those who manage the current
svstem, the results of the research must be considered to
be an imaginative exercise in tactful communication and
persuasion. Toward this end, decision makers must be
presented with a range of alternative solutions, so that
they can select the alternative that can be implemented

at a reasonable cost. Although they may risk the loss of
optimality, they will be able to weigh the cost and time of

imp|mnontati()n versus the p()tential gains.

If the solutions are implemented, it must also be con-
sidered that the system is very likely not static, and it will
need to be controlled and monitored over its useful life.
Changes in the environment may invalidate the assump-
tions of the model. Additional constraints may be identi-
fied, parameter values may change substantially, or
objectives may even lendc The application of OR re-
quires that all involved are prepared for changes that may
have long-lasting implications for the all of the related
systems.

Applications of Operations
Research

In the few decades since its origin as a tool for military
strategy, OR has become involved in an astounding num-
ber of applications areas. Due to the interdependence
between the military and industrial activities, there was
a quick acceptance of this body of methods in manufac-
turing. OR quickly proved to 1dmlt1|v efficiencies in vari-
ous pl()(lll(_tl()l] systems, including assemb]v processes,
the blending of mgledlents inventory controls, optimal
product mixes, trim loss apph((\tl(ms and job shop
scheduling. Later, high-technology manufacturing was
to use OR to assist in circuit layout design and multi-
processor assignment upplicutions,

Managers of commercial interests other than manu-
facturing also welcome the cost-effective organizational
changes that OR can suggest. Personnel directors can
more efficiently schedule a workforce, agricultural deci-
sions under uncertainty can be better evaluated. purchas-
ing decisions can be optimized, and cargo loading can be
planned for the greatest efficiency. Those who are
concerned with marketing issues can evaluate media
mixes to maximize exposure, plem pr()(]uct introductions.
arrange portfolios of assets, assess pricing strategies. and
propose optimal sales allocations.

A subset of OR applications is concerned with the
location of facilities. Examples include the location of
warehouses or retail stores, the layout of workstations
within a factory, and the placement of public services
such as fire or police stations. Location problems will
often contain a function of distance, which may be mea-
sured in a variety of ways. Some of the most common
location problem structures include median problems.
center problems, dispersion problems, covering prob-
lems, and layout problems. A smaller subset of location
applications concerns problems that occur on networks or
in systems that can be represented as networks. Such
problems take advantage of network topology and the
associated graph theoretic concepts of connectivity and
adjacency. An enormous number of decisions related to
transportation and  physical ~ distribution  can  be
constructed and evaluated using these tvpes of models.
Other applications on networks involve things such as
pipeline construction, highway patrol scheduling. and
school bus routing.

Operations Research as a Decision
Tool in Social Science

Although OR has proved its worth for practical applica-
tions in militury, industrial, management, or commercial
interests, there are many other applications for which the
motivation is to understand social systems. Because many
social systems are extraordinarily complex, the model
structures and solution procedmes designed in OR are
capable of providing insights where other methods would
be overwhelmed.

Some of the applications of OR in the social sciences
are economic in nature, including research into labor
costs and market demand under different conditions. cap-
ital budgeting and expansion for the public sector,
and budget allocation. Other applications concern the
distribution of limited common public resources. Others
may give insight into the patterns of criminal activitv
through “hot-spot” analysis. Political campaign strategies
and policy platforms can be designed or analvzed using
OR methods. Appropriate candidates for committee



assignments or the selection of the most diverse set of

applicants for acceptance to a graduate program can be
modeled with the OR process. Ecological applications
exist when the goal is to minimize the risk of natural
hazards, optimize forest management, encourage envi-
ronmental protection, select sites for natural reserves,
or implement pollution controls. Still more applications
are designed to increase the efficiency of public services,
such as minimizing the response time for emergency per-
sonnel, or reduce inequities in access to services or work-
loads among public servants.

Generally speaking, OR offers a structure for modeling
the complex relationships among humans or between hu-
mans and the environment. Even though these social
systems can be highly complex, OR allows simplified ver-
sions of these systems to be modeled in such a way that
their individual constraints and variables can be examined
and used to generate alternative solutions.

Prospects and Opportunities

Although OR has matured quickly over the decades since
its inception, its rapid growth and dissemination into
a wide variety of applications areas have opened up
new areas for fundamental research. Due to the complex
nature and computational complexity of the systems being
modeled in OR, there is an ongoing search for new
methods (or modifications of existing methods) that will
allow a greater number of problem instances to be solved
optimally. Investigations into “integer-friendly” formula-
tions—that is, formulations that will generate integer so-
lutions without explicit integrality constraints—are one
area of interest. New and variant heuristic solution
procedures are developed on a regular basis. Of course,
the search for an algorithmic solution to NP-complete OR
problems or to special cases of such problems is of con-
stant concern. Although the notions of optimality and
fuzzy modeling may seem to be at odds with one another,
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the notion of parameters that are dynamic has produced
substantial interest. Perhaps most lmp(ntantl\ each in-
cremental step in OR allows for a greater understanding
of complex systems—often social svstems—and  the
models chosen for these systems expose both our under-
standing of them and the limitations of our ability to cap-
ture and study them.

See Also the Following Article

Heuristics

Further Reading

Ackoff, R. L., and Sasieni, M. W. (1968). Fundamentals of
Operations Research. Johm Wilev & Sons. New York.

Blumenfeld, D. (2001). Op('r(n‘mns Rescarch Caleulations
Handbook. CRC Press, Boca Raton, FL.

Budnick, F. S., Mojena, R., and Vollmann. T. E. (1977
Principles of Operations Rescarch for Management. Richard
D. Irwin, Homewood, IL.

Dantzig, G. B. (1990). Origins of the simplex method. In
A History of Scientific Computing (S. G. Nash. cd.),
pp- 141-151. ACM Press, New York.

Fisher, M. L. (1981). The Lagrangian relaxation method
for solving integer programming problems. Mamt. Sci.
27, i—18.

French, S., Hartley, R., Thomas, L. C.. and White. D. |.
(1986). Operational Rescarch Technigues. Edward Amold.
Victoria.

Hillier, F. S., and Lieberman, G. J. (1995). Introduction to
Operations Research. McGraw Hill, New York.

Marsten, R., Saltzman, M., Shanno. D.. Picrce. G.. and
Ballintijn, J. (1989). Implementation of a dual affine
interior-point algorithm for linear programming. ORS.A |.
Comput. 1(4), 287—-297.

Nagel, S. S, and Neef, M. (1978). Quantitative applications in
social sciences: Operations research methods. A |. Sociol.
83(6), 1564—1567.

Singh, . (1972). Great Ideas of Operations Rescarch. Dover
Publ., New York.



