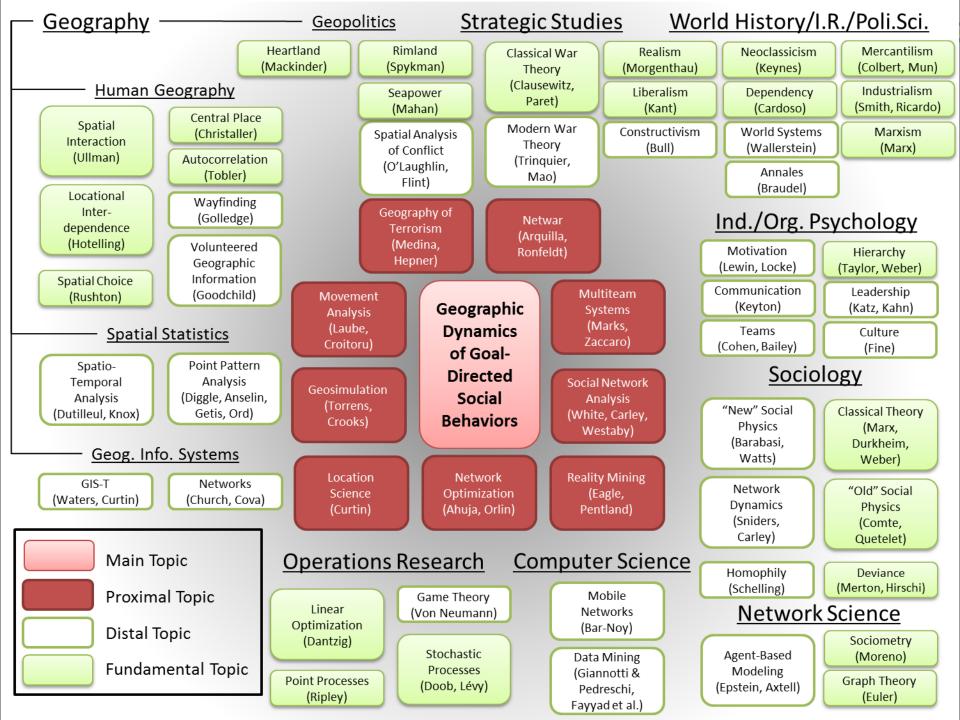
A Data-Driven Framework for the Analysis of Geographic Patterns of Team Processes

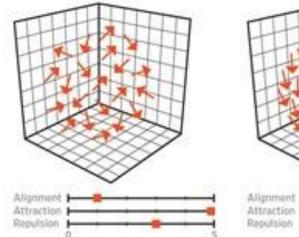
Submitted to Paper Session 2628: Human Dynamics in the Mobile Age III 2015 Annual Meeting of the Association of American Geographers April 22, 2015 | Chicago, Illinois

> Alec D. Barker, Ph.D., Kevin M. Curtin, Ph.D. George Mason University Department of Geography and GeoInformation Science

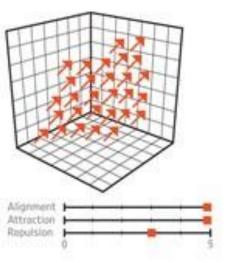

Richard M. Medina, Ph.D. University of Utah, Department of Geography

Introduction

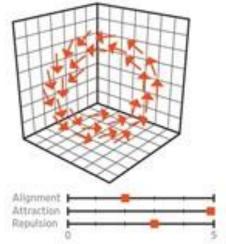
- Teams pursue many kinds of licit and illicit goals:
 - Law enforcement, emergency services, & disaster recovery
 - Smuggling, organized crime, & terrorism
- Goal-directed social behaviors:
 - May be modeled using games like hide-and-seek
 - Exhibit geographic patterns
- Owing to technology, there now exists unprecedented opportunity to understand licit & illicit team behaviors using:
 - Team games
 - Computer geosimulation
 - Smartphone-based tracking of movement and communication
 - The tools of geography and related disciplines
- Our goal is to determine how to anticipate, identify, and influence geographic attributes of team processes

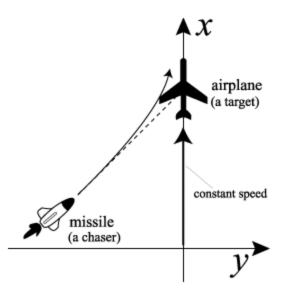


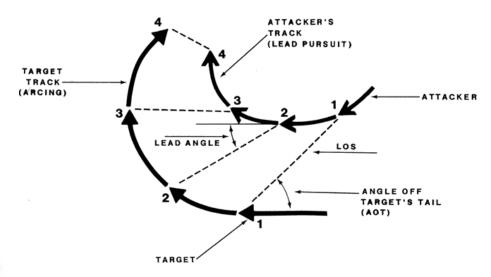
TAKING Shape


Changing simple parameters has profound effects on a swarm. By controlling only attraction, repulsion and alignment (how similar a critter's direction is to that of its neighbours), researcher lain Couzin induced three different behaviours in a virtual collective, all akin to ones in nature.

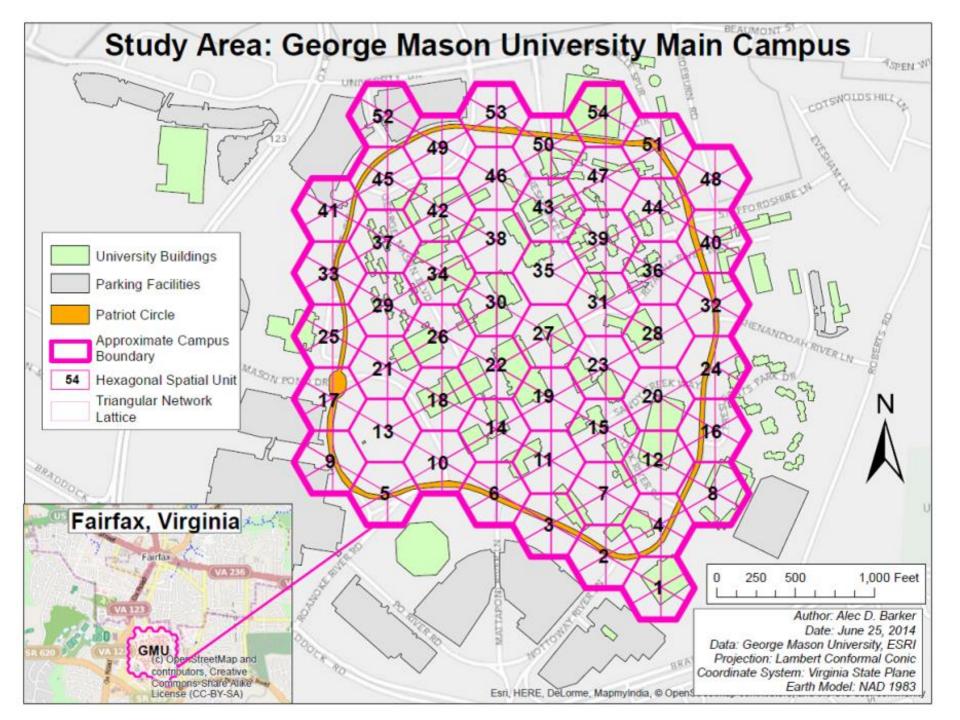
DISORDER Alignment with only the closest neighbours produces... nothing but a disordered swarm.

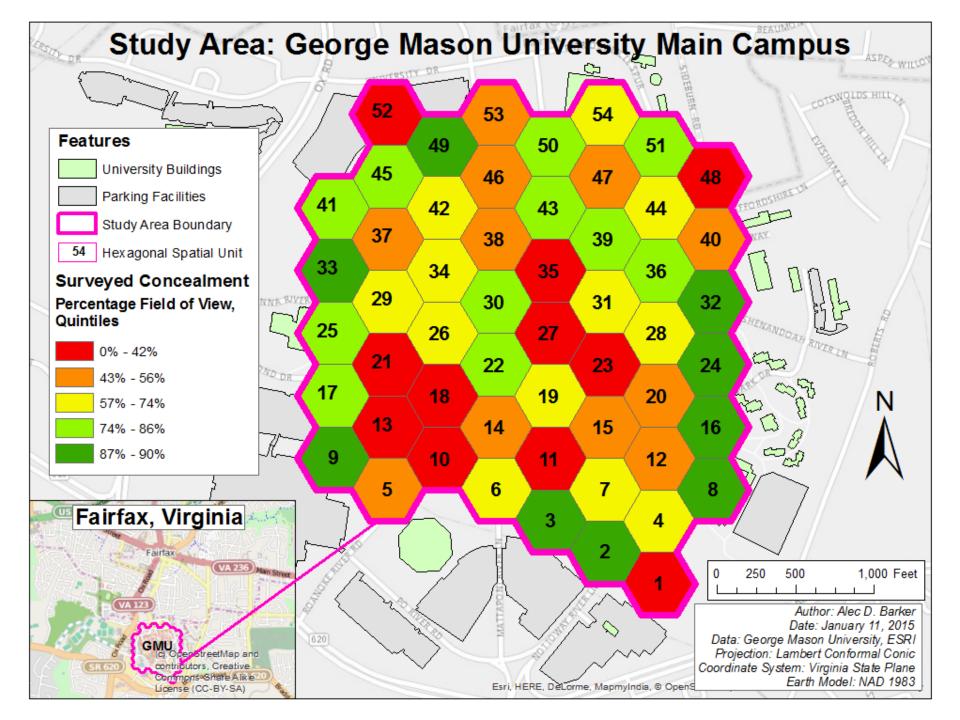



http://www.wired.co.uk/magazine/archive/2013/05/features/as-one


FLOCK Maximise alignment across the flock and the torus shifts; they all travel in the same direction.

TORUS Raise the alignment and the chaotic swarm swirls into a doughnut shape called a torus.


http://www.mi.sanu.ac.rs/vismath/sun/images/f2-11.gif http://scilib.narod.ru/Avia/Shaw/images/image02-01.png


Methods

- The research design performed an experimental analysis of small team behaviors using:
 - simple games of team pursuit-and-evasion
 - network-based stochastic geosimulation
 - formal experimental design
 - measures including team success rates, "boundariness"
 - space-time permutation scan statistic given by Kulldorff et al., 2005
- We will compare these results to those of similar experiments involving human subjects, interactive games, and smartphone tracking to refine models, analyses, and conclusions

Data

- Geosimulation of a multi-agent system
- 1.11 million runs, June-November 2014

	Does Not Have Actionable Information	Has Actionable Information			
Evader	CONCEALMENT MAXIMIZATION	RISK MINIMIZATION			
	Maximizes concealment available at any	Minimizes risk by evaluating			
	of the seven nodes in the immediate area	cumulative concealment, pursuer			
		proximities, and information quality			
		at each of the seven nodes in the			
		immediate area			
Pursuer	RANDOM SEARCH	COST MINIMIZATION			
	Applies random draws to movement	Minimizes cost by evaluating			
	preferences to determine if and where to	cumulative distance required to			
	move	move to a node where an evader(s)			
		was observed and information			
		quality			

Data

Data Table	Data Fields						
Game Outcomes	game serial number, game end time, number of evaders, number of evaders engaged						
Diava a Mayo monto	game serial number, turn, player, start cell, end cell, start latitude, start longitude, end latitude, end						
Player Movements	longitude						
	game serial number, turn, sender, message type, receiver, message cell, sender cell, receiver cell,						
Player Communications	message latitude, message longitude, sender latitude, sender longitude, receiver latitude, receiver						
	longitude						
Data stions and Engagements	game serial number, turn, observer, target, result, observer cell, target cell, observer latitude, observer						
Detections and Engagements	longitude, target latitude, target longitude						
Cell Occupancies	game serial number, cell, number of occupants, turn, team						

- The computer simulation models produced
 - .csv tables for analysis in R and SaTScan (5 per batch run)
 - .kml files for visualization in Google Earth (1 per batch run)
- These tables recorded game outcomes, player movements, player communications, detection and engagement events, and cell occupancies

- Correlates of Team Success
 - The outcomes of a game of pursuit and evasion correlated most strongly with the basic probability that a pursuer would decide to move if the pursuer did not possess actionable information (P_Pmove).
 - The outcomes of a game of pursuit and evasion are also correlated with the interaction of the basic probabilities that a pursuer would decide to move and communicate (P_Pmove:P_Pcomm).

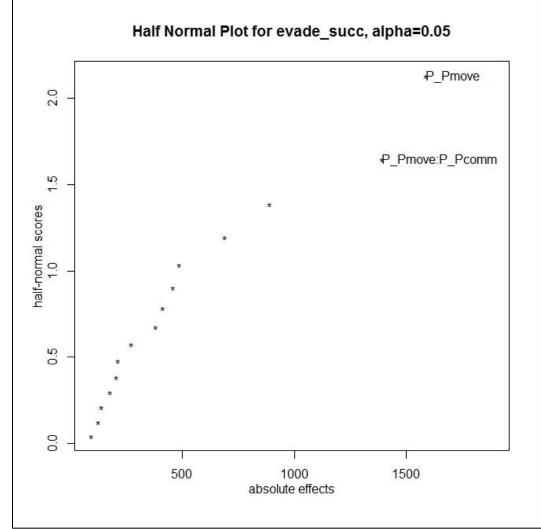


Figure 13: Half Normal Plot for Evader Success, Experiment Five, α = 0.05

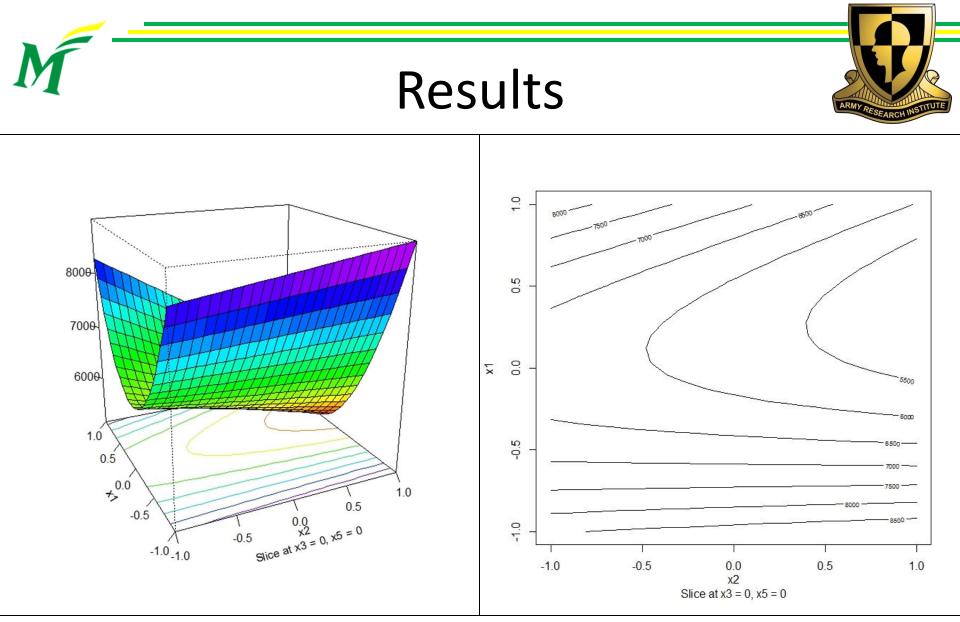
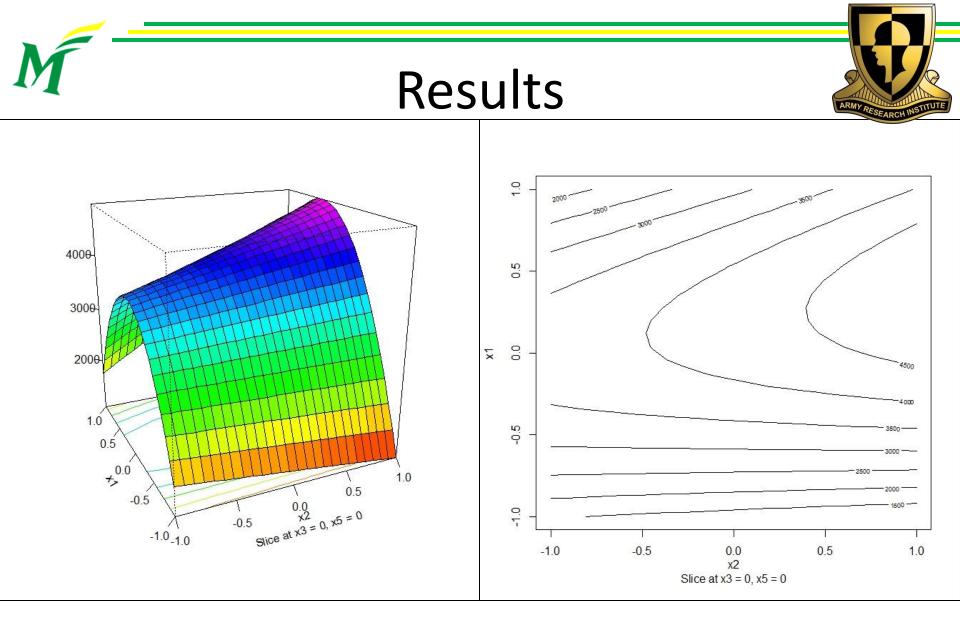
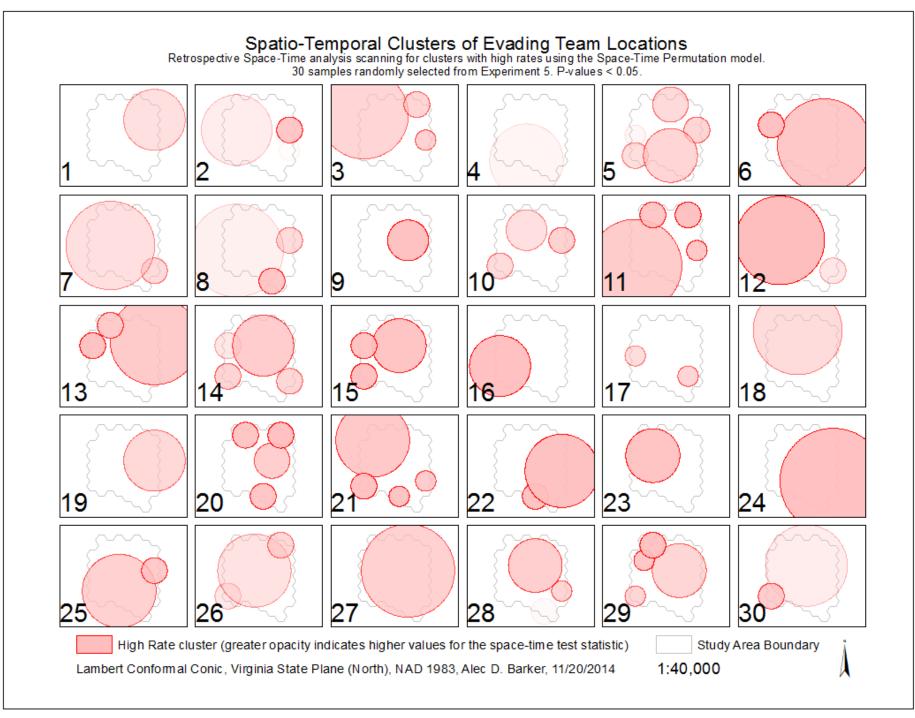


Figure 14: Response Surface Plot (3D) for Evader Success, Experiment Five, x1=P_Pmove, x2=P_Pcomm Figure 15: Response Surface Plot (2D) for Evader Success, Experiment Five, x1=P_Pmove, x2=P_Pcomm




Figure 16: Response Surface Plot (3D) for Pursuer Success, Experiment Five, x1=P_Pmove, x2=P_Pcomm Figure 17: Response Surface Plot (2D) for Pursuer Success, Experiment Five, x1=P_Pmove, x2=P_Pcomm

- Spatiotemporal Clustering Behaviors
 - Evidence of spatiotemporal clustering in team movement behaviors is observable in thirty game repetitions randomly sampled from Experiment Five.
 - Spatiotemporal clustering behaviors were more strongly represented in the movements of the pursuing team; there were twice as many clusters observed in pursuit behaviors than there were in evasion behaviors, on average.

		Data Source	2	Pursuer		Evader		
	Sample	Run	Game	Number of	Maximum p-	Numberof	Maximum p-	
				clusters	value	clusters	value	
	1	13	9958	5	1E-17	1	1E-17	
	2	11	7182	4	1E-17	3	1E-17	ARMY DO DITUTE
	3	5	9791	5	1E-17	3	1E-17	RESEARCHINSTI
	4	16	5404	5	4.7E-15	1	1E-17	
7	5	10	6087	5	1E-17	5	1E-17	
lee	6	5	8185	3	1E-17	2	0.041	
d E	7	11	2367	4	1E-17	2	1E-17	
Saı	8	4	4704	6	1.2E-15	3	0.0000013	
	9	3	4072	2	0.000086	1	0.00074	
Randomly Sampled	10	16	1120	5	1E-17	3	1.7E-14	
pu	11	13	2999	3	1E-17	4	0.017	
Ra	12	13	186	4	1E-17	2	1E-17	
30	13	3	7178	5	0.028	3	0.0012	
	14	7	2915	4	3.2E-12	4	2.2E-16	
pa	15	9	3143	3	1E-17	3	0.017	
LV6	16	9	5945	5	0.038	1	0.0033	
	17	9	2947	2	1E-17	2	1E-17	
ve Ve	18	10	1364	5	0.000017	1	1E-17	
ers t Fi	19	4	6071	6	1E-17	1	1E-17	
ste	20	8	107	4	1E-17	4	0.033	
in Clu	21	17	4286	10	0.0083	4	0.00088	
jer j	22	15	5314	3	0.0000011	2	0.0059	
Table 15: Space-Time Clusters Observed in Observations of Experiment Five.	23	11	5716	7	1E-17	1	1E-17	
e-] of l	24	8	9228	5	0.00031	1	0.0012	
) ac	25	3	5874	4	0.00013	2	7.4E-11	
Sk Lior	26	17	8051	4	1E-17	3	1E-17	
15: vat	27	5	7666	5	1E-17	1	3.3E-16	
le	28	4	227	12	0.0000023	3	1.4E-13	
de <mark>-</mark> sd(29	14	2015	4	0.018	4	0.0013	
μŪ	30	16	9306	5	1E-17	2	2.7E-10	<u> </u>
			Mean	4.8	Mean	2.4		<u> </u>
			St. Dev.	2.007	St. Dev.	1.172		 \ \
								-

- Boundary-Seeking Behaviors
 - There is very strong evidence for the primacy of boundaries and borders in the location decisions of teams engaged in pursuit and evasion.
 - Comparison of the "boundariness" values generated by team pursuit and evasion behaviors with different terrain models and random walk models support the idea that evading teams seek locations on areal boundaries, whether or not concealment is available in interior areas.
 - Consequentially, pursuing teams also occupy boundary locations more frequently than in random walk models.

Two-sample means T-test

- Two-tailed:
 - $H_0: \mu_{observed} = \mu_{random}$, "A team's preference for boundary locations is not differentiable from random."
 - − H_A : $\mu_{observed} \neq \mu_{random}$, "A team's preference for boundary locations is differentiable from random."

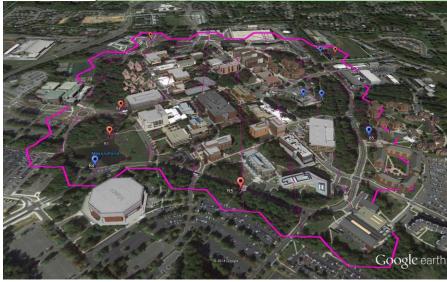
• One-tailed:

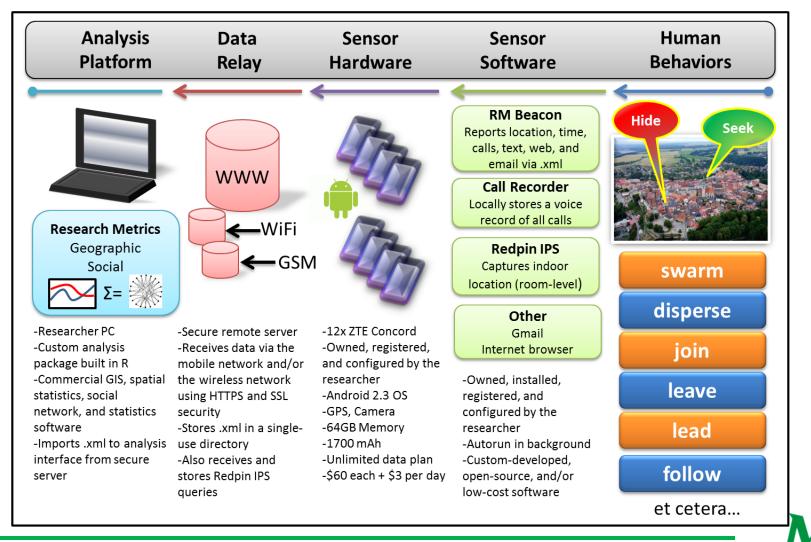
- $H_0: \mu_{observed} = \mu_{random}$, "A team's preference for boundary locations is not differentiable from random."
- H_A : $\mu_{observed} > \mu_{random}$, "A team's preference for boundary locations both is differentiable from and higher than random."

	Experiment 2		Experiment 3		Experiment 5		Experiment 6		Experiment 7
Run	Evader	Pursuer	Evader	Pursuer	Evader	Pursuer	Evader	Pursuer	Random
1	0.745243	0.437785	0.747625	0.473693	0.427666	0.41072	0.557908	0.436546	0.3617195
2	0.716672	0.435616	0.731902	0.473082	0.379184	0.423246	0.523888	0.440672	0.3616914
3	0.718161	0.467971	0.740573	0.510539	0.431903	0.385001	0.509368	0.42902	0.3615570
4	0.757495	0.40434	0.749876	0.424862	0.37989	0.385739	0.58365	0.403029	0.3621451
5	0.706365	0.410647	0.693366	0.44947	0.409219	0.385395	0.554271	0.416335	0.3613460
6	0.714624	0.362571	0.68063	0.393282	0.482891	0.391856	0.516605	0.4235	0.3615560
7	0.619595	0.372221	0.502997	0.400789	0.467643	0.384978	0.471066	0.405611	0.3616221
8	0.601929	0.361069	0.426233	0.3575	0.363661	0.401757	0.577876	0.455626	0.3617681
9	0.682364	0.372156	0.636885	0.390206	0.510204	0.412654	0.507393	0.438567	0.3621159
10	0.742302	0.436982	0.747625	0.473693	0.427666	0.41072	0.557908	0.436546	0.3613275
11	0.698811	0.388055	0.640571	0.402561	0.367475	0.384794	0.492543	0.403252	0.3622756
12	0.658497	0.424791	0.444116	0.39109	0.543561	0.391737	0.493704	0.379481	0.3628125
13	0.723792	0.438443	0.736214	0.462884	0.410428	0.425522	0.574341	0.41044	0.3615151
14	0.728494	0.419683	0.743341	0.44366	0.524338	0.383842	0.496282	0.40623	0.3611688
15	0.716022	0.469493	0.669375	0.427942	0.382647	0.410059	0.591107	0.443881	0.3615015
16	0.731489	0.419389	0.618321	0.403805	0.405783	0.388175	0.585851	0.413283	0.3617325
17	0.636518	0.384479	0.479059	0.380971	0.397534	0.405959	0.575319	0.423974	0.3632115
18	0.771624	0.393543	0.764216	0.429962	0.545204	0.386733	0.575508	0.381981	0.3616566
19	0.746039	0.437359	0.74868	0.475293	0.427666	0.41072	0.557908	0.436546	0.3608473
Mean	0.706107	0.412452	0.657979	0.429752	0.43603	0.398927	0.542237	0.420238	0.3617668
Std.Dev.	0.046738	0.033199	0.112895	0.04102	0.05619	0.013462	0.036524	0.019677	0.0005264
t Stat	31.93491	6.616392	11.40215	7.168108	5.464802	11.3746	20.41046	12.18945	
P(T<=t) one-tail	1.33E-17	1.64E-06	5.72E-10	5.64E-07	1.72E-05	5.94E-10	3.39E-14	1.96E-10	
t Critical one-tail	1.734064	1.734064	1.734064	1.734064	1.734064	1.734064	1.734064	1.734064	
P(T<=t) two-tail	2.65E-17	3.27E-06	1.14E-09	1.13E-06	3.43E-05	1.19E-09	6.78E-14	3.92E-10	
t Critical two-tail	2.100922	2.100922	2.100922	2.100922	2.100922	2.100922	2.100922	2.100922	

Table 16: Analysis of Boundary-Seeking Behaviors (α=0.05, 18 DF)

Conclusions


- This project began with three fundamental lines of inquiry to produce a basis for a much larger analytical framework that will be useful for understanding how groups of people move and communicate in pursuit of their collective goals.
- This project provides evidence for several conclusions and hypotheses resulting from those three lines of inquiry:
 - Correlates of team success
 - Spatiotemporal clustering behaviors
 - Boundary-seeking behaviors
- These conclusions pertain exclusively to the computer simulation model and comparative empirical research remains necessary to understand real-world implications thereof.
 - Lab-based interactive computer games and human subjects
 - Full-scale games with smartphone tracking in the real world



Smartphone-based Reality Mining for Geographic Dynamics of Goal-Directed Social Behaviors

- Applied Research and Development
 - Transportation and Urban Planning
 - Disaster Response and Recovery
 - Criminology and Law Enforcement
 - Targeting and Decision Support in Irregular Warfare
 - Migration, Trade, and Trans-border Communication
 - Cohesion and Culture
 - Art, Taste, and Influence Networks
 - Economics and Society

- Sustained Basic Research
 - Exploring variables of demographics, culture, terrain, goal type, leadership, affiliation, cohesion, and diurnal rhythm
 - Repeating the series of computer-simulated, table-top, and fullscale experiments in various locations, such as urban, suburban, or rural settings in domestic and foreign environments
 - Recruiting experiment participants from a demographically varied subject pool, thereby assessing the influence of age, place of origin, or terrain familiarity
 - Investigating leadership, cohesion, and affiliation via controlled interventions in team organization
 - Understanding different combinations of competitive behaviors like smuggling-and-interdiction or security-and-infiltration

Alec Barker – abarker5@gmu.edu Kevin Curtin – curtin@gmu.edu Richard Medina – richard.medina@geog.utah.edu